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Isothermic formation of spherulitic boundaries with 
equidistant time marks in a foil of polypropylene 
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In a foil of polypropylene two circularly growing spherulites which touch each other and 
finally form a common grain boundary are regarded. Another grain boundary is formed by 
one circularly growing spherulite which makes contact with a growing band and with the 
growing interior of a circular ring. All possible grain boundary formations are systemized. 
This is done theoretically using analytical planar curves geometry, and is done in most 
cases, experimentally with equidistant t ime marks. 

1. Introduction 
Crystallization is studied in a foil of isotactic poly- 
propylene. The polymer possesses an isotacticity of 
96%, a mean molecular weight, Mw of 300.000 and 
a thickness of 4 ~tm, and contains neither stabilizers 
nor fillers. This foil melts at about 168 ~ During heat 
treatment the temperature is increased under exclu- 
sion of 02 in an inert atmosphere to about 200 ~ in 
order to reduce the number of athermic nuclei. The 
temperature is quickly reduced from 200 to 132 ~ In 
the supercooled melt at 132~ immediately many 
0~-modified nuclei and some 13-modified nuclei of 
polypropylene are formed which begin to grow simul- 
taneously and circularly as ~ and 13 spherulites, respec- 
tively. 

Fig. 1 shows a growing spherulite in which 
1. the limiting circle between the spherulite and the 

undercooled melt is called the growth front, 
2. the three circular marks in the interior of the 

spherulite are called thermic marks or time marks, 
3. the radial rays from the nucleus to the growth 

front are called growth lines; these growth lines are 
approximately described by the fibrils. 

In the metastable, undercooled and molten foil at 
132 ~ the a-modified spherulite grows at a constant 
growth rate of v~ = 3.3 gm min - 1, and the 13-modified 
spherulite at a constant growth rate of v~ = 
4.3 ~tm min - 1. At 144 ~ the growth rate of both cx and 
13 spherulites is reduced to about 0.3 gmmin -a. 
Growth of spherulites for 15 min at 132 ~ then for 
4 min at 144~ again for 15 min at 132~ then for 
4 min at 144 ~ and so on, leads to equidistant circu- 
lar marks in the spherulites, as shown in Fig. 1 [1]. 
The different grey shading of the smaller circular 
marks is caused by the higher thickness of folded 
lameilae. 

When two 0~ nuclei start to grow at the same time as 
spherulites, they make contact with each other dur- 

ing growth. At this moment of contact, a straight grain 
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boundary begins to form. In Fig. 2 the development of 
this grain boundary is demonstrated at a later point of 
time; here, recognize a straight grain boundary and 
two symmetrical growth fronts which are circular arcs. 
Besides, two dynamic triple points exist at the two 
ends of the grain boundary. 

With regard to the folded molecules of polypropy- 
lene, with a fold length of about 10-2-10 - 1 gm, the 
4 ~tm used foil is thick. On the other hand, the 4 gm 
used foil is thin with regard to spherulites having 
a radius of about 100 gm. Therefore, one can theore- 
tically treat the spherulites in the thin foil using two 
dimensional analytical geometry. According to this, 
the spherulitic boundaries, which comprehend the 
movable growth fronts and the fixed grain boundaries, 
are theoretically treated with differential planar curve 
geometry. 

In this paper the spherulitic boundaries for one 
growing spherulite is determined, which finally grows 
together with a growing 

1. straight band, 
2. second spherulite, 
3. interior of a ring. 
The two phases of the spherulite and of its growing 

partner can consist either of the same modification or 
of different modifications. 

2. Discussion 
2.1. Grain boundary produced by one 

spherulite and one straight band 
2. 1. 1. The straight band and its production 
A band is produced by transcrystallization [2]. Its 
fibrils are not arranged radially like those of 
spherulites, instead they possess parallel fibrils. Fig. 3 
shows a growing band of 0~- and a growing band of 
13-modified polypropylene at 132 ~ grown for 30 min. 
Of course, the growth rates v~ and v~ are the same for 
spherulites and bands. 
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Figure 1 A growing spherulite in a polypropylene foil that contains 
three thermic marks. It is limited by a circular growth front and 
surrounded by undercooled melt. 

Figure 4 An ~ spherulite and an ~x band both having grown with the 
same growth rate of 3.311retain -1. The grain boundary is 
a parabola. The point of time when the spherulite has begun its 
growth is marked by the first thermic mark in the band, the 
directrix. The next mark of time illustrates the moment of contact 
between spherulite and band. Then the marks are set every 15 rain. 
This procedure is the same for Figs 5 and 6. A family of salient 
points defines the grain boundary. 

Figure 2 A straight grain boundary is formed between two 
spherulites after 45 min growth at 132 ~ Both spherulites began 

their growth at the same time. They contain two time marks. The 
grain boundary is limited by two dynamic triple points where three 
two-dimensional regions meet: grain 1, grain 2 and the melt. 

temperature is decreased very quickly to 132~ 
A large number of ~ nuclei is formed at the border 
between liquid foil and solid filament. The nuclei are 
arranged like a string of pearls. The following, 
simultaneous growth of all nuclei, forms the desired 
straight band. 

The [3 band is made by '"cutting" the supercooled 
melt at the beginning of spherulitic growth at 132 ~ 
with a fine scalpel. This causes mechanical stress and 
orientation of the polypropylene molecules, which 
leads to the growth of a band of [3-modification at 
sufficient distance from the cut. Some other possibili- 
ties for producing bands can be found in [3-5], e.g. 
Notice that each straight band has two straightly 
growing growth fronts. 

Figure 3 An cx and a [3 band having begun to grow at the same time. 
Each band shows two symmetrical thermic marks set after 15 rain 
growth and two growth fronts after 30 min growth which move in 
opposite directions. A growth rate ratio, v~/v~ of 1.3 can be 
recognized. 

The cx band is made by putting a polyester filament 
onto the foil's surface before heat treatment begins. 
The temperature is increased to 200~ for some 
minutes for homogenization of the melt. Then the 
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2. 1.2. Overview of possible spherufitic 
boundaries 

Here the growth of a growing spherulite and a grow- 
ing band with a straight growth front making contact 
with each other and then forming a common grain 
boundary is investigated. It is the aim to observe 
experimentally the formation of this grain boundary 
and growth fronts. Theoretically, their shape is de- 
duced using analytical planar curve geometry. 

Between the spherulite and straight growth front 
there are three possible combinations of modifications; 
~-~ as shown in Fig. 4, [3-~ as shown in Fig. 5 
and ~x-[3 as shown in Fig. 6. It is deduced in the 
following that the shape of the grain boundary in 
Fig. 4 is a parabola, in Fig. 5 one branch of a hyper- 
bola and in Fig. 6 a half ellipse continued by two arcs 
of a logarithmic spiral which meet in a vertex. The 
vertex is continued by an intrinsic grain boundary [6]. 

The cx and [3 growth fronts, which belong to any 
point on the parabola, the hyperbola and on the half 
ellipse, are circular arcs for the spherulite and two 
straight lines for the growing front. Within the growth 



Figure 5 A 13 spherulite and an ~ band, with growth rate ratio of 
v~/v~ = 4.3(gm min -  1)/3.3 (gm rain-  1) ~ 1.3. The grain boundary is 
a hyperbola. 

Figure 7 The nucleus of a 13 spherulite is placed directly on the 
directrix of a straight growth front of s-modified polypropylene. 
The grain boundary consists of two straight lines. 

Figure 6 A 13 band is growing around an ~ spherulite. The 
photograph shows as grain boundary one-half of an ellipse 
continued by two arcs of a logarithmic spiral at both sides until 
these arcs meet in a vertex. Beginning in the vertex there runs an 
intrinsic grain boundary formed by two growth fronts which belong 
to the same band. 

shadow of Fig. 6, the growth fronts are evolvents of 
a logarithmic spiral. 

A limiting case also has been investigated, where the 
nucleus of the 13 spherulite is placed directly on the 
directrix of a straight ~ growth front [3]. During 
growth a grain boundary is formed which consists of 
two straight lines. These straight lines are caused by 
degeneration of one branch of the hyperbola. The two 
straight lines form an angle of 2 cos-1 (v~/@. The 
growth fronts are two straight lines for the ~ front and 
a circular arc for the 13 spherulite. The experimental 
result is shown in Fig. 7. 

2. 1.3. Conic sections 
Fig. 8 shows a schematic drawing for construction of 
conic sections. At point of time, t, = 0 the nucleus of 
a spherulite is formed at a place called the focus, F. 
The straight growth front at t = 0 is called the di- 
rectrix, D. The constant growth rate of the spherulite 
is named u, those of the straight grown front, V. The 
triple point, T, is the point where spherulite, band and 
supercooled melt coexist. T is a dynamic triple point. 

Melt 

m 

T ~  Band 

- C o n i c  s e c t i o n  

- Focus, F 

- Directrix, D 

- Growth front 

Figure 8 Schematical drawing of a conic section as grain boundary 
between both triple points, T: F, focus; D, the directrix of the conic 
section. The growth fronts are two straight lines and a circular arc 
with radius r. 

At T it is valid at point of time, t, that the spherulite 
has grown a distance ut from focus F, while the band 
has grown a distance Vt perpendicularly from 
directrix, D. Therefore it is true that 

TF  ut u 
= - -  = -- = constant = e 

TD Vt V 

This means that the lengths TF and TD to every point 
T have the same ratio. 

Where an ~ spherulite meets an ~ band, Fig. 
4 shows the case that the growth rate is the same for 
spherulite and band. For  any point on the grain 
boundary it holds that the distance between the grain 

~boundary and the directrix equals the distance bet- 
ween the grain boundary and the nucleus of the 
spherulite. The ratio of these lengths amounts to one. 
In the theory of conic sections, this defines a parabola. 

Where a 13 spherulite meets an ~ band, Fig. 5 shows 
the case that the ratio of the growth rates, u/V, 
amounts to 1.3. This defines one branch of a hyper- 
bola because the ratio is greater than one. 

Where an ~ spherulite meets a 13 band, Fig. 6 
shows a teardrop-shaped curve as a grain boundary. 
This teardrop consists of a half ellipse and two 

965 



symmetrically arranged arcs of a logarithmic spiral 
and is continued by a straight intrinsic grain 
boundary. 

1. The half ellipse: Fig. 6 shows in its first part 
a ratio of lengths of u/V = 0.77. In the theory of conic 
sections, this ratio smaller than one defines an ellipse 
of which only a half ellipse is realized here. The polar 
equation of conic sections [7] reads 

P 
r ~ _  m 

1 + ecos q~ 

with r the distance between grain boundary and nu- 
cleus of the spherulite, q) the angle between polar 
radius, r, and the polar axis, p, the parameter for 
q~ = re/2, and e the known ratio. The right part of Fig. 
9 and Fig. I0 show such a part of an ellipse with 
e = 0.77. The point H, the vertex of the ellipse, is given 
by ru = a and ~H from cos (rt - dp~ = b/a. a and b are 
the half axes of the ellipse. In point H the half ellipse 
ends, their continuation is explained in the next sec- 
tion. 

2. Two identical arcs of a logarithmic spiral: Fig. 6 
shows a photograph of the experimental result with 
continuation of a half ellipse by two identical and 
symmetrically arranged arcs of a logarithmic spiral. 
The moment where the grain boundary is exactly 
described by a half ellipse is schematically shown in 
Fig. 9. In H, the growth lines of the straight [3 growth 
front lie tangential to the grain boundary. This means 
that in H a growth shadow originates. No point of the 
grain boundary inside the growth shadow can be 
reached from a straight growth line of the growing 
band. So, further continuation of the ellipse is not 
possible. For deduction of the run of the grain bound- 
ary inside the shadow one uses differential planar 
curve geometry. This is now proved using a poly- 
propylene foil. The half ellipse must be continued by 
two arcs of a logarithmic spiral beginning in H. It is 
well known that a differential element of an arc, ds, 
yields in polar co-ordinates 

ds = [(dr) 2 + r 2] 1/2 (do) 

H 

G r o w t h  

s h a d o w  

- Ha l f  ellipse 

- Focus ,  F 

- D i r ec t r i x ,  D 

Figure 9 Schematical drawing of a half ellipse as grain boundary: F, 
is focus; D, directrix. The half ellipse ends in two symmetrically 
arranged points, H, the vertices of the ellipse. A shadow of growth 
originates in t t  because the growth lines of the growing I~ band in 
H are tangential to the grain boundary. 

r H = a  

I F 

u~ [ H 

Figure 10 A band of the 13 modified polypropylene with greater 
growth rate and an c~ spherulite forming a common grain boundary. 
This schematic drawing corresponds to Fig. 6. The first part of the 
grain boundary is exactly a half ellipse with focus, F, and directrix, 
D. The half ellipse ends in the two symmetrically arranged points H, 
where a growth shadow originates. In this picture the grain 
boundary is continued by two arcs of a logarithmic spiral between 
H and I. T represents a triple point inside the shadow of growth with 
its corresponding fronts of growth. Beginning in I an intrinsic grain 
boundary is formed. 

= F ( d r )  2 (d~o)2]  'i2 
L\dt j + r't--d- D J dt 

This equation divided by dt yields 

= ( i2  + r 2 4~2)112 

Fig. 10 shows that inside the growth shadow i.e. bet- 
ween points H and I, the [3 growth lines (the fibrils in 
the experiment) always lie tangential to the grain 
boundary and that the ~ growth lines are radial rays 
with origin in the 0~ nucleus, F. Therefore one has 

= u n and/,  = u~, which gives 

I t)n= O~ 2 + \  d t ]  J 

or  

<,j_o:>,,,d, re~ 
r LtU~) r 

with dr = u~dt, which is integrated beginning in H 

i12 
r - - ( p .  = (t)~z2 --  1 •  r , .  

Eliminating the logarithm function, 

I"  1 r = rnexp (@ _;~)l/2(e - ~oH) (1) 

o r  

= 

In mathematics the polar equation of a logarithmic 
spiral is well known [8] as 

r = a exp (d~ cotc~) (2) 
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Figure 11 P a r t  o f  a l o g a r i t h m i c  spiral .  At  ~ = 0 the re  is r = a. I t  

c a n  be  seen t h a t  the  ang le  be tween  the  focus  r a y  b e g i n n i n g  in F a n d  

the  l o g a r i t h m i c  spi ra l  is a l w a y s  the  s a m e  a n d  equa l s  or. In  this  

p i c tu re  c~ = 77 ~ w a s  c h o s e n  in  o r d e r  to  h a v e  sufficient cu rv -  

a t u r e  of  the  l o g a r i t h m i c  spiral .  In  e x p e r i m e n t  it ho lds  t h a t  
co t  c~ = v~/(v~ -- v2) l/z = 3.3/2.76 = 1.2, so cy = 39.9 o ~ 40 ~ 

Hereby r and ~ are the  polar co-ordinates, a is the 
radius for qb = 0 and cy the angle, under which the 
logarithmic spiral is intersected at every point from 
the rays beginning in the nucleus, F, as Fig. 11 shows. 
Comparison of Equations 1 and 2 yields a = rH, 

= r c -  cpn and Op = ~ o -  OH. Therefore it holds for 
one branch of the grain boundary between H and I 

r = rH exp [(go -- cpn ) cot (rc -- goH)] (3) 

For  the point I where the ~-13 grain boundary, r(g0), 
ends and therefore the growth of the ~ spherulite is 
finished, it holds 

r (~0 = ~) = rH exp [(rc -- qoH) cot(~ -- (PH)] 

= r H exp(cy cot cy) 

For  cy = 60 ~ 

r (q~ = re) = 1 . 8 3 r  H 

3. The intrinsic grain boundary: Until now a grain 
boundary has been obtained which consists of a half 
ellipse which is continued by a pair of arcs of 
a logarithmic spiral, caused by a growing ~ spherulite 
and a growing straight [3 growth front of a band. The 
two arcs of logarithmic spirals hit in the point I. 
Therefore the angle between the tangents to these two 
arcs in I amounts to 2cy. The point I is also the 
beginning of a straight intrinsic [3-[3 grain boundary as 
Fig. 10 schematically shows.  It is called intrinsic 
because this grain boundary is formed by the same 
and single [3 band. The intrinsic grain boundary is 
attached symmetrically to the pair of logarithmic spi- 
rals. 

It is noted that growth fronts of the spherulite are 
always circular arcs. The growth fronts of the band are 

1. two straight lines if the grain boundary is either 
a branch of a hyperbola, a parabola or a half ellipse; or 

2. two straight lines continued by evolvents of the 
logarithmic spirals if the grain boundaries are either 
logarithmic spirals or a straight intrinsic grain bound- 
ary. 

2.2. Grain boundary produced by two 
spherulites 

Four cases are distinguished in the plane 
1. Two spherulites of the same modification begin 

their growth at the same time. 
2. Two spherulites of the same modification begin 

their growth at different points of time. 
3. An a and a [3 spherulite begin their growth at the 

same time. 
4. An ~ and a [3 spherulite begin their growth at 

different points of time. 
The ~ spherulite grows with the constant rate us, the 
[3 spherulite with up, 

2.2. 1. Two ~ spherulites (or two fl spherulites) 
begin their growth at the same time 

This case has been treated earlier. A straight grain 
boundary is formed, see Fig. 2. 

2.2.2. Two c~ spherulites (or two fl spherulites) 
begin their growth at different points 
of  time 

An ~ nucleus starts to grow at t = 0 as ~ spherulite. It 
has reached the radius Ar when the growth of the 
second ~ nucleus starts. When the two spherulites 
meet each other, the grain boundary begins to form. In 
the following, the grain boundary is one branch of 
a hyperbola. This can be proved by the equidistant 
marks of time in Fig. 12: two marks of the same time 
meet and form a salient point. All these salient points 
together represent the run of the grain boundary.The 
difference in distance between any salient point and 
the two nuclei, Q(t)-r2(t), equals Ar which is inde- 
pendent of the chosen salient point; but this is the 
definition of a hyperbola. The fronts of growth are 
circular arcs with different radii, as Fig. 12 shows. 

2.2,3. An ot spherulite and a fl spherulite 
start at the same time 

Regard an ~ nucleus and a 13 nucleus which lie at 
a distance, D. The nuclei start to grow at the same time 
as circular spherulites with constant growth rates u~ 
and up. The ratio of the growth rates is g = uffu~, re is 
the radius of the at spherulite at that point of time 
when the ~ spherulite makes contact with the 
13 spherulite with radius D - r e .  Then 

t)~ _ D --re D 
o r  / '0 - -  

t& re g + 1 
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Figure 12 Two ~ spherulites which began their growth at different 
points of time. This fact can be easily recognized using the time 
marks. All salient points lie exactly on the grain boundary. The 
grain boundary is by definition a hyperbola. 

points, H. It is continued by two symmetrical arcs of 
a logarithmic spiral between H and I because of the 
existence of a growth shadow [6, 9]. They intersect at 
point I of Fig. 14, where growth of the a spherulite has 
just finished. Beginning in I, a straight intrinsic [3-[3 
grain boundary is formed [6]. It is so called because it 
is formed by only one [3 spherulite. The complete 
mathematical derivation of the circular arc, the two 
arcs of a logarithmic spiral and the intrinsic grain 
boundary is given in [6]. 

The growth fronts of the a spherulite are always 
circular arcs. The growth fronts of the [3 spherulite are 
circular arcs which end at the circular ~-[3 grain 
boundary. Later, when the radius of growth is larger 
than that radius belonging to the tangent points, H, 
they end at the limit of the growth shadow. Inside the 
shadow limit the [3 growth fronts are symmetrically 
continued by a family of evolvents of the arcs of 
logarithmic spirals. 

Figure 13 An a spherulite and a J3 spherulite of polypropylene start 
their growth at the same time at 132 ~ The photograph shows an 
a-I~ grain boundary, as a teardrop, an intrinsic ~-[3 grain boundary 
and equidistant time marks. Crossed polarizers and a X plate were 
used for emphasizing the run of the intrinsic grain boundary. 

Upper  s h a d o w  " - .  

Intrinsic / . . . . .  ! ~ " ,  Nucleus of 

rain b o u n d a ~  - -~ -~T" ~" ~ spherulite 

Tangent point, H 
Lower  s h a d o w  / / / 

/ 
f 

/ 

t 

J 
/ 

Figure 14 Schematic drawing of the experimental result shown in 
Fig. 13. The ~-[3 grain boundary consists of an arc of a circle 
between the two tangent points, H, and two symmetrically arranged 
arcs of a logarithmic spiral between the points H and I inside the 
grown shadow. In I an intrinsic [3-13 grain boundary starts. 

Fig. 13 shows an ~ spherulite with g = 1.3. Fig. 14 
shows schematically such an ~ spherulite with g = 2 
because of better drawing. Its a-[3 grain boundary 
begins with a circular arc between the two tangent 
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2.2.4. An ce spherulite and a t~ spherufite 
begin their growth at different points 
of  time 

Between an ~ nucleus and a [3 nucleus there is 
a distance, D. The nuclei start to grow at different 
points of time. r is the radius of the ~ spherulite just in 
that moment when it makes contact with the 
13 spherulite, with a radius of (D - r )  

Distinguish two intervals for r, i.e. 0 < r < ro and 
ro < r <D. (At r --- ro both nuclei start at the same 
time.) For  0 < r < ro, the a spherulite begins to grow 
later than the [3 spherulite. For ro < r < D ,  the 

spherulite begins to grow earlier than the 
[3 spherulite. 

Out of 0 < r  <ro, r --- to/2 and g = 2 were chosen 
for a demonstration in Fig. 15. The grain boundary 
begins with a fourth-order curve. At the two tangent 
points this curve is continued by two arcs of a logar- 
ithmic spiral. Where the arcs of logarithmic spiral hit, 
growth of the ~ spherulite is finished and the intrinsic 
grain boundary starts to grow. The intrinsic grain 
boundary is a straight line beginning in I in Fig. 15. 
Fig. 16 shows the experimental result. 

For r o < r < D ,  r = ( D + r o ) / 2  and g = 2  were 
chosen for demonstration in Fig. 17. The grain bound- 
ary begins its growth with a change in curvature, as 
Fig. 17 shows. At the two symmetrical tangent points 
(seen from the position of the [3 nucleus) the curve is 
again continued by two arcs of logarithmic spiral. 
When they intersect, a straight intrinsic grain bound- 
ary begins to grow. Fig. 18 shows the experimental 
result. 

In the case of r = D, the ~ spherulite has reached the 
growth radius, D, at exactly that moment when the 
[3 nucleus begins to grow. The grain boundary only 
consists of two symmetrically arranged arcs of a logar- 
ithmic spiral. Each arc of logarithmic spiral can be 
described by polar angles, a, between 0 and re. It is 
shown in Fig. 19 for g = 2. 

The ~ growth fronts are always circles or circular 
arcs until the growth of the ~ spherulite has finished. 
The [3 growth fronts are always circles or circular arcs 



Figure 15 The grain boundary  between an ~ spherulite and 
a ]3 spherulite where the ~ spherulite began to grow later, r = ro/2 
and g = 2 were chosen for the schematic drawing. The tangent 
points are shown. 

Figure 18 The experimental result for the situation presented in 
Fig. 17, but  with g = 1.3, r = (63 + 2) gm and D = (93 ___ 2) lain. 
Only the first part of the grain boundary is visible. 

Figure 16 The experimental result for the situation presented in 
Fig. 15, but  with g = 1.3, r = (21 + 2) gm and D = (110 _+ 2) gin. 

\ 
\ 

\ 
\ 

\ 

),[3 
/ 

/ 
/ 

/ 
,,, , i ,  , ,  , , f' 

Figure 17 The grain boundary  between an ~x spherulite and 
a [3 spherulite where the ~ spherulite began to grow earlier. 
r = (D + r0)/2 and g = 2 were chosen for the schematic drawing. 

until the J3 spherulite reaches the tangent points. Then 
the 13 growth fronts are circular arcs only outside the 
shadow of Figs 15 and 17. Inside the shadow, the 
circular arcs are continued by evolvents of the two 

/ 
/ 

/ 
/7  

\ 
\ 

\ 

Figure 19 When the ~ spherulite has exactly reached the position o f  

the [3 nucleus, r = D, the [3 spherulite starts to grow. One sees two 
symmetrical branches of a logarithmic spiral as grain boundary f o r  

g = 2 .  

arcs of logarithmic spiral These curves run from the 
shadow limit to the ~ [3 grain boundary, later to the 
intrinsic grain boundary. 

2.3. Grain boundary produced by one 
spherulite and the interior of one 
circular band (ring) 

2.3. 1. Production o f  one circular b a n d  (ring) 
An ~ ring is produced in a polypropylene foil in the 
following way. The liquid foil is undercooled at 
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D' 

Centre 

d 
m m - - 0  

Nucleus 

Melt 

Crystallized ring 

Figure 20 A crystallized ring with radii D and D'. Its interior consists of melt. The inner radius of the ring is D' when growth of the ring begins, 
and D at that point of time, when the nucleus of the spherulite is formed. The nucleus lies at a distance, d, from the centre of the ring. Of course 
it holds that D >_ d. This is the starting position of Fig. 21. 

132 ~ Thereby, some a nuclei are formed and they 
start to grow immediately as grains with a growth rate 
of 3.3 gmm in -  5. When the grain has a radius of about 
D = 250 gin, the temperature is increased to 144 ~ 
The grain then grows with a growth rate of about 
0.3 gmmin -~. After 90 min of growth at 144~ the 
temperature is increased to 169 ~ for 20 rain. During 
this time the interior of spherulites with a radius of 
250 gm melts, but the ring grown at 144 ~ during 90 
min remains stable. This is so because with increasing 
temperature the thickness of the lamellae also 
increases, which again causes a higher melting tempe- 
rature of some tens of degrees. 

In this paper, only the interior of the ring is 
updated. The exterior of the ring shows the same 
growth habits as a spherulite. This is shown in section 
2.2. 

2.3.2, Nucleus within the interior of  a ring 
After 20 min at 169 ~ the temperature is decreased to 
126 ~ for a very short time in order to obtain one 
nucleus in the molten circular area within the crystal- 
lizing ring. Fig. 20 shows this situation schematically. 
Then the temperature is increased to 132 ~ where the 

nucleus grows as a spherulite within the ring; while 
the ring grows circularly with decreasing radius with 
the same growth rate. The increasing radius of the 
exterior of the ring is not of interest here. 

Theoretically the following combinations of ring 
and spherulite are possible 

1. a ring and a spherulite, 
2. 13 ring and 13 spherulite, 
3. [~ ring and a spherulite, and 
4. 0~ ring and [3 spherulite. 
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Practically only the first case has been realized. 
Cases two and three are not possible in polypropylene 
because of neocrystallization: instead of melting the 
[~ spherulites transform into a large number of very 
small a spherulites [10]. Although it is possible in 
principle Case four has not been found. 

2.3.3. An ce ring and an c~ nucleus (grain 
boundary is an ellipse) 

Regard a growing ~ ring and a growing ~ spherulite 
which just meet each other [-11]. This is schematically 
shown in Fig. 21. Ro is the radius of the ring at that 
moment when the grain boundary begins to grow. r0 is 
the radius of the spherulite at the same moment. 

Since the radius, R, of the inner ring decreases with 
time, t, R(t) = Ro -u~t ,  and since the radius, r, of the 
spherulite increases with time, t, r ( t )=  ro +u~t, one 
obtains 

R(t) + r(t) = (R0 -u~t)  + (ro + o~t) 

= Ro + ro = constant 

This is the mathematical expression for the Gardener 
construction of an ellipse if the rays r and R run from 
the two focii in the centre of the ring and of the 
spherulite to any point of the ellipse. 

The growth fronts are circular arcs both for the ring 
and for the spherulite. Fig. 22, quoted from Ell],  
shows a grain boundary which is an ellipse with three 
time marks. 

2.3.4. A t~ ring and an o~ nucleus 
Although this case does not exist because of neocrys- 
tallization of polypropylene, it is treated. With the 



Figure 21 Schematic drawing of that point of time when e~ ring and c~ spherulite meet each other with radii R0 and r0, respectively. At a later 
point of time the radii are R and r, respectively. This leads to the Gardener construction of an ellipse because of the same growth rate. 

There, the grain boundary  has a point  with an infinite- 
ly small radius of  curvature. This is the limiting case 
for the existence of a growth shadow and separates the 
two cases presented in items two and three below. Fig. 
23 shows an example with 9 = 2. 

2. d varies between D and D/g: One finally has 
a growth shadow which causes two arcs of logari thmic 
spiral. The logari thmic spirals intersect and the 
growth  of the = spherulite finishes. Grain  boundary  
format ion is cont inued by an intrinsic grain boundary  
until the centre of  the ring is reached. Fig. 24 shows 
this for (D + D/g)~2 = d with g = 2. 

3. d varies between D/9 and 0: Growth  shadow 
cannot  exist. The grain boundary  of  the spherulite is 
a closed curve without  any sharp salient point. Fig. 25 
shows this case for d = D/2g with g = 2. At d = 0 
the grain bounda ry  of the spherulite is a circle with 
radius 

D~ 
- - D  

Figure 22 An ellipse as grain boundary with three time marks. 

symbols d and D with 0 < d < D of  Fig. 20, one has to 
distinguish three cases 

t. Did = upru~ = g: The cx spherulite reaches exactly 
the centre of  the ring when its growth has finished, 

2.3.5. An  ~ r ing and  a fl spherul i te 
To dist inguish between d = O, d = D and 0 < # < D 

1. d = 0 means that  the grain boundary  of  the 
spherulite is a circle with radius 

u6 D 
t)~ + t) 6 

2. d = D means that  the [3 nucleus is posi t ioned 
exactly on the limit of  the ring. At this point, the grain 
bounda ry  has a vertex with an angle of  2cos -  1 (1)~/Oi3). 
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Figure 23 A n  a spheru l i te  a n d  a [3 r ing.  Did = v#/v~ = g = 2 were  c h o s e n  c o n s t r u c t i o n .  
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Figure 24 A n  a spheru l i te  a n d  a 13 r ing.  d = (D + D/9)/2 a n d  9 = 2 was  c h o s e n  for  c o n s t r u c t i o n .  

The run of the closed grain boundary is shown in Fig. 
26 for g = 2, 

3. 0 <d  <D means that the grain boundary is al- 
ways a closed curve without vertex as shown in Fig. 27 
for d = D/2 and g = 2. 

3. Conclusions 
When two growth fronts touch each other, a point of 
the grain boundary is formed. The authors have inves- 
tigated the grain boundary which is built by the 
growth front of a spherulite with a growth front of 
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a straight band, of another spherulite, and of a circular 
band. 

The work surpasses the hithero existing results of 
Varga [3, 12, 13] in the following ways 

1. The formation of growth fronts is investigated 
using a series of equidistant time marks, which are also 
called thermic marks. The equidistant time marks 
represent a series of past growth fronts. 

2. The formation of the grain boundary is investi- 
gated by the intersection points of the equidistant time 
marks. So it is easy to obtain the mathematical expres- 
sion for most grain boundaries. 
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Figure 25 An c~ spherulite and a 13 ring. d = D/(2g) and g = 2 were chosen for construction. One emphasizes that the grain boundary cannot 
be described by any ellipse. 

A 

Figure 26 A [3 spherulite with the nucleus in point A, and an ~ ring. d = D and g = 2 were chosen for construction. 

3. The growth shadow has been introduced. Within 
the region of the growth shadow the growth lines are 
curved and the growth fronts can be described by 
evolvents of the grain boundary. 

4. Within the growth shadow, finally two symmet- 
rical arcs of a logarithmic spiral end in a vertex. 
Beginning in the vertex an intrinsic grain boundary is 
formed. 

5. The work in Section 2.3. is completely new. An 
spherulite in an ~ ring gives an ellipse as a grain 

boundary. 

In this paper  the authors have deduced theoret- 
ically, and in most  cases shown experimentally, the 
formation of spherulitic boundaries. For  further in- 
formation and detailed calculations of all curves pre- 
sented in this paper  see [14J. 
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Figure 27 A ~3 spherulite and an ~ ring. d = D/2 and g = 2 were chosen for construction. It has to be emphasized that the grain boundary 
cannot be described by any ellipse. 
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